微信公众号
您当前的位置: 首页 > 科研动态
近日,国际权威学术期刊Nature Communications在线发表了自然资源部第二海洋研究所题为“Middle east warming in spring enhances summer rainfall over Pakistan”的最新研究成果,阐述近四十年以来中东地区的春季地温增暖会造成巴基斯坦等季风边缘区的夏季降水增加。 论文第一作者为自然资源部第二海洋研究所卫星海洋环境动力学国家重点实验室海星博士后李保生,联合通讯作者为上海交通大学周磊教授和美国马里兰大学Raghu Murtugudde教授;合作者包括我所陈大可院士,中国科学院大气物理研究所周天军研究员,上海交通大学侯书贵教授以及河海大学秦箭煌副教授。 巴基斯坦位于南亚季风北侧边缘区,属于典型的干旱半干旱气候。但是巴基斯坦水资源部报告中指出其从2010年起每年都遭受洪灾的影响,并且屡发创记录的洪水事件,如2022年巴基斯坦发生世纪性洪水,被称为该国家有史以来最严重的一次自然灾害。针对巴基斯坦洪涝频发的科学问题,该研究发现在南亚夏季风期间,巴基斯坦和印度西北部地区等季风边缘区的降水从1979到2022年增幅了46%,并且正以每十年0.4-0.6 mm/day的速度不断增加,这意味着巴基斯坦等季风边缘区正面临着逐步增加的洪灾风险。 该研究同时指出中东地区正以每十年0.5°C的速度在春季升温。春季中东增温可以通过引发该区域的海平面气压降低,从而导致印度洋南北两侧的海平面气压梯度增大,越赤道气流增强,进而使得阿拉伯海上空的低层大气在春季出现低空急流型的风场;该过程持续到夏季风爆发,低空急流得到进一步加强并北移。低空急流作为夏季风的重要组成部分,是中心风速可达20-30 m/s且位于850hPa的急流带。研究发现阿拉伯海上空的低空急流从1979年开始正以每十年0.27个纬度的速度向北移动。北移的低空急流会将原本输送到印度中部的充沛水汽向北输运到巴基斯坦和印度西北部;此外,低空急流北侧的风场水平切边会产生强烈的气旋涡,不仅会引发大气不稳定性增加,而且可以造成低层水汽辐合加强,最终不稳定能量和水汽供应实现了跨季节的海-陆-气多圈层耦合,导致季风边缘区的降雨和洪水风险增加。 论文链接:https://doi.org/10.1038/s41467-023-43463-0 查看详细>>
来源:国家海洋局第二海洋研究所 点击量:26自然资源部第一海洋研究所科研人员在极地海区生源硫生物地球化学研究领域取得新进展,研究发现太平洋入流水增强可显著增加北冰洋太平洋扇区二甲基硫(DMS)的生产和排放,该发现对于评估北冰洋对全球气候变化的响应与反馈具有重要的科学意义。相关成果日前在线发表于地学著名期刊《Limnology and Oceanography》。 主要由海洋产生的二甲基硫(DMS)对泛北极海域(亚北极-北极海域)及全球气候变化具有重要作用。泛北极海域对全球气候变化的响应和反馈敏感,温暖且营养丰富的太平洋水通过白令海峡流入北冰洋,可能会对其生态系统和生源硫循环产生深远的影响,甚至影响到全球变暖情景下的气候变化。因此,研究泛北极海域生源硫的年际变化和循环的特殊性,探究太平洋入流水等不同水团对生源硫的生产和周转的影响,对揭示泛北极海域负温室气体二甲基硫的释放与气候意义具有十分重要的意义。 自然资源部第一海洋研究所科研人员通过在2012-2014年间,对受太平洋入流水影响最强烈的白令海峡和楚科奇海生源硫循环的年际变化观测研究发现:白令海峡内太平洋入流水增强会引起东部和西部高DMS区域分别发生的垂直和水平方向上的扩展,白令海峡东部阿拉斯加沿岸水和白令海陆架水也均会造成高DMS区域的扩展;同时,楚科奇海DMS浓度和海气通量较白令海峡出现显著增加。太平洋入流水增强会潜在加强北冰洋海水变暖、冰缘线北退、水体混合增强以及无冰区扩大。2012年,浮游植物大量聚集的融冰区是DMS前体物质浓度较高且DMS消耗缓慢的地区;而2014年,东西伯利亚沿岸流和太平洋入流水交汇区内白令海水增加造成水体混合增强,形成了生源硫化合物浓度和DMS海气释放的热点区。2012-2014年间,随着太平洋入流水的增强,楚科奇海表层DMS浓度及其向大气的排放量增加了三倍。 此项研究通过现场实测数据分析出在全球气候变暖情景下,暖太平洋入流水在泛北冰洋海域生源硫化合物的分布循环和DMS海气释放中发挥了关键作用。该发现在泛北极海域生源硫循环研究中具有重要意义,对于评估在太平洋入流水作用下北冰洋对区域和全球尺度上气候变化的响应与反馈具有重要作用。 自然资源部第一海洋研究所厉丞烜副研究员为论文第一作者、王保栋研究员为共同通讯作者。该项研究得到了国家自然科学基金面上项目、中央级公益性科研院所基本科研业务费专项资金项目、自然资源部科技创新人才培养工程青年人才项目、极地专项等资助。 论文链接:https://aslopubs.onlinelibrary.wiley.com/doi/full/10.1002/lno.12458 查看详细>>
来源:国家海洋局第一海洋所 点击量:23厄尔尼诺-南方涛动(ENSO)是地球气候系统中最强烈的年际异常现象,因其暖位相期间在赤道东太平洋出现显著的海表增暖而闻名,即厄尔尼诺事件。近几十年来,人们发现与传统的东太平洋厄尔尼诺(eastern Pacific El Ni?o,简称为EPEN)不同,某些年份海表暖异常更弱且偏西位于中太平洋,被称为中太平洋厄尔尼诺(central Pacific El Ni?o,简称为CPEN)。两类事件因其生成机制以及对全球气候影响的不同而受到广泛关注。前人研究聚焦于导致两类事件差异的海气动力过程,然而对海洋盐度发挥何种作用仍不清楚。近年来,中国科学院海洋研究所王凡研究团队关注热带太平洋盐度效应在ENSO中的作用,从海洋盐度的新视角揭示了其对增强两类厄尔尼诺差异的动力机制,相关研究结果近日发表在地学TOP期刊《Geophysical Research Letters》上。 总的来看,东太平洋El Ni?o往往比中太平洋型增暖振幅更大且位置偏东。基于Argo浮标和再分析资料发现,海表盐度异常在两类事件中有着明显不同的纬向分布,具体表现为在EPEN中盐度负异常最大值出现在赤道中太平洋,而在CPEN中盐度负异常最大值位于赤道西太平洋。前人研究发现,海洋盐度通过影响海洋垂直层结和改变混合层底的冷却夹卷和混合,在El Ni?o海表暖异常的发展中起着积极的作用,但盐度不同的纬向结构是否会进一步影响两类事件呢? 研究团队随后深入研究了海表盐度的纬向结构对两类El Ni?o海温变率的影响。通过敏感性数值实验发现,当盐度异常出现在赤道中太平洋日界线附近时,所带来的El Ni?o增暖最显著,其强度随着盐度异常出现的位置向东、西太平洋方向递减。基于温度收支分析发现,盐度引起海温变化主要是通过增强了混合层底的垂向夹卷和混合作用来完成的。在El Ni?o期间,降水增多引起海表盐度降低,混合层变薄,混合层底的垂向温度梯度减小,减弱次表层冷水的垂向夹卷和混合作用,导致海表温度增暖而加强了El Ni?o事件。而当盐度异常出现在中太平洋时,垂向夹卷和混合作用最强烈,因而对海表温度的影响最大。 而两类El Ni?o事件中的最大盐度异常中心,发现在东太平洋型事件中出现在中太平洋的盐度异常所造成的异常增暖更为显著,而相比中太平洋型事件出现在西太平洋的盐度异常则较弱。通过进一步的敏感性实验对照,将两类事件的淡水强迫(对应盐度的纬向位置不同)情景分别加入到两类厄尔尼诺事件中,发现相对于西太平洋的盐度异常,出现在中太平洋的盐度异常更大程度地促进了El Ni?o事件的发展。而盐度异常在两类El Ni?o事件中的纬向结构差异,使得两类事件的海温差异增加了11%。因此,盐度在两类厄尔尼诺中不同的纬向结构,通过其在调控表层垂向层结的效果不同,进一步增大了两类事件海温异常的差异。 该项研究丰富了对ENSO复杂性的认识,为理解ENSO多样性提供了新的视角,对完善ENSO动力学理论和进一步提高ENSO预报水平具有重要意义。研究团队由中国科学院海洋研究所官聪副研究员、王凡研究员、田丰博士、胡石建研究员和美国海洋大气局Michael J.McPhaden教授组成,其中官聪为第一作者,王凡为通讯作者。研究得到了国家自然科学基金面上基金和创新团队项目、中国科学院青促会人才项目和国家重点研发项目等多个课题的支持。 相关成果及链接如下: 1.Guan,C.,Tian,F.,McPhaden,M.J.,Hu,S.,&Wang,F.(2023).Zonal structure of tropical Pacific surface salinity anomalies affects the eastern and central Pacific El Ni?os differently.Geophysical Research Letters,50,e2023GL105554.https://doi.org/10.1029/2023GL105554 2.Guan,C.,Tian,F.,McPhaden,M.J.,Wang,F.,Hu,S.,&Zhang,R.-H.(2022).Zonal structure of tropical Pacific surface salinity anomalies affects ENSO intensity and asymmetry.Geophysical Research Letters,49,e2021GL096197.https://doi.org/10.1029/2021GL096197 查看详细>>
来源:中科院海洋研究所 点击量:27近日,中国科学院海洋生态与环境科学重点实验室宋金明团队联合德国亥姆霍兹基尔海洋研究中心(GEOMAR),在地学领域TOP期刊Limnology and Oceanography发表最新研究成果,揭示了氨基糖单体碳同位素在异养细菌、浮游植物以及在有机质降解过程中的变化特征,并探讨了其对有机质异养转化的指示作用。 海洋有机质是海洋中最大的还原性碳储库,其在全球碳循环中扮演着非常重要的角色。海洋有机质中有一小部分(<10%)可在短时间尺度内(小时到天)被微生物快速利用,称为活性有机质。尽管活性有机质占比很小,但其在支撑微食物网、驱动元素循环方面发挥着重要作用。此外,活性有机质的降解转化与大气二氧化碳紧密相连,因此探究海洋有机质的活性及周转过程对于理解海洋储碳及碳循环机制至关重要。传统上,通常基于有机分子(如氨基糖)丰度或构成评估有机质的生物活性。然而,此方法难以精细地刻画有机质的异养代谢过程。近年来单体同位素分析技术的发展为解决这一问题提供了有力工具。相比于总有机质(Bulk)同位素分析,单体同位素直接反映某一特定分子的同位素特征,从而能够避免选择性降解和多种化合物来源对bulk同位素值的影响。但到目前为止,对有机质重要组分氨基糖的单体同位素特征依然未知。 本研究通过室内纯培养实验,测定了四种异养细菌以及四种浮游植物中的氨基糖单体碳同位素值。在此基础上,进一步通过模拟微生物降解实验,探究了在由活性有机质转变为惰性有机质的过程中,氨基糖单体碳同位素的变化机制。研究发现,异养细菌中葡萄糖胺(GlcN)和半乳糖胺(GalN)的碳同位素值较为接近,相差0.4‰到4‰,而浮游植物中两者则差异较大(4.3-16.6‰)。这一结果显示异养细菌可能具有相似的葡萄糖胺和半乳糖胺合成机制,而浮游植物对两者的合成可能通过不同的路径。相对葡萄糖胺和半乳糖胺,细菌在其特异性氨基糖胞壁酸(MurA)的合成中则优先利用轻的碳同位素(12C)。 微生物降解实验结果显示,葡萄糖胺与半乳糖胺的碳同位素差值由降解初期的5.8‰降低到了降解末期的1‰。这一变化与藻类和菌类的纯培养结果相一致。在降解初期,细菌快速消耗活性有机质并将一部分活性有机质转化为细菌有机质。而在降解后期,由于活性碳源消耗殆尽,细菌可能通过再循环利用分子碎片以节省能量消耗。 基于氨基糖单体碳同位素在细菌和藻类中的分布模式以及在有机质降解过程中的变化特征,本研究提出了一个新指标VAS,以反映氨基糖的细菌再合成。通过对外海颗粒物及沉积物样品的分析,发现这一指标相较于传统氨基糖降解指标GlcN/GalN能够更加精细地反映有机质的降解状态,从而为更加准确地探析海洋有机质细菌改造和转化提供了另一有力工具。 论文第一作者为郭金强博士(目前在德国亥姆霍兹海洋研究中心从事博士后研究),宋金明、袁华茂研究员为论文共同通讯作者。该研究得到了国家自然科学基金、中国科学院A类先导专项、山东省自然科学基金等项目联合资助。 相关论文及链接如下: Guo,J.Q.,Achterberg,E.P.,Shen,Y.,Yuan,H.M.*,Song,J.M.*,Liu,J.,Li,X.G.,and Duan,L.Q.(2023).Stable carbon isotopic composition of amino sugars in heterotrophic bacteria and phytoplankton:Implications for assessment of marine organic matter degradation.Limnology and Oceanography. https://doi.org/10.1002/lno.12468. 查看详细>>
来源:中科院海洋研究所 点击量:12