中国科学院文献情报系统—海洋科技情报网 Chinese Academy of Sciences | marine science and technology information network system

微信公众号

您当前的位置: 首页 > 综合资讯

综合资讯共计 4,029 条信息

      全选  导出

1 广州能源所绿色智能养殖平台技术持续助力海洋牧场高质量发展 2024-06-05

5月30日,由海南普盛海洋科技发展有限公司投资、中国科学院广州能源研究所研发设计、中国船舶集团旗下广船国际所属文冲修造负责建造的半潜式深远海智能养殖旅游平台“普盛海洋牧场6号”在广州南沙命名交付。 “普盛海洋牧场6号”半潜式深远海智能养殖旅游平台总长100米、最大宽度39米、顶甲板高27.6米,作业吃水15米,入级中国船级社(CCS)。平台兼顾养殖与休闲旅游功能,在海上养殖的同时可提供不同风格的高端客房,以及餐厅、游泳池、酒吧等休闲娱乐设施,实现多产业融合发展。平台配置海上清洁能源供电,可实现能源的自给自足,并配置了生活生产配套、海水淡化、污水/污油处理系统等,实现海上生产“零”污染。 前期,广州能源所已为海南普盛海洋科技发展有限公司研发“普盛海洋牧场1号”(2022年交付)和“普盛海洋牧场3号”(2023年交付),均已在海南乐东龙栖湾国家级现代智慧海洋牧场完成多轮养殖,取得了良好的经济效益和社会效应。“普盛海洋牧场6号”交付后将助力海南省打造深远海智慧渔业装备集群,推动海南渔业“往岸上走、往深海走、往休闲渔业走”。 深远海绿色智能养殖平台技术是广州能源所针对行业发展需求,基于40多年海洋可再生能源开发理论和实践经验研发而成,获中、美、欧、英、澳、日、加等多国发明专利授权,在广东、福建、海南等6省实现成果转化应用,获中国科学院科技促进发展奖和中国渔船渔机渔具协会行业创新奖。今后,广州能源所将持续深化关键技术研究,实现海上生产的绿色化、机械化、信息化和现代化,服务海洋经济高质量发展。 查看详细>>

来源:中科院广州能源所 点击量:0

2 中国科学院海洋研究所在海洋腐蚀微生物基因组的高灵敏分析及智能预警技术研发获新进展 2024-06-05

近日,中国科学院海洋研究所在海洋腐蚀微生物基因组的高灵敏检测分析技术研发方面取得新进展,成功研发了基于摩擦纳米产电效应的硫酸盐还原菌基因片段的定量检测及智能预警技术,相关成果发表于国际学术期刊Energy&Environmental Science(IF=32.5)。 硫酸盐还原菌是腐蚀性最强,也是研究最广泛的腐蚀微生物,广泛存在于海洋环境中。腐蚀微生物的功能和行为依赖于其复杂的基因网络,通过研究其胞内功能性表达基因对于操纵微生物腐蚀发生行为表型十分重要。 此研究构建了基于液滴摩擦产电效应的高电压输出器件(DEG)。通过构建聚二甲基硅氧烷掺杂的高熵氧化物材料作为DEG的中间层,利用中间层材料的高熵效应和强大的电荷捕获能力有效减少电荷衰减,从而为增加DEG的电压输出提供了保证,成功实现了420 V的高电压输出和0.23 mA的电流输出。科研人员还研究构建了基于DEG的硫酸盐还原菌基因片段的高灵敏检测分析方法和早期预警系统,为低容量、高灵敏度的腐蚀微生物基因组样品分析需求提供了新的可能。 该研究是海洋环境腐蚀领域中一项新的研究探索,对于腐蚀微生物功能基因信息的定量检测分析,以及从功能遗传学水平探索微生物腐蚀早期预警具有重要的科学价值。 海洋环境腐蚀与生物污损重点实验室博士生周雅楠,副研究员曾艳及硕士生王健明为论文共同第一作者,王鹏研究员为论文通讯作者。研究得到了国家自然科学基金等项目的资助。 文章链接:Yanan Zhou,‡Yan Zeng,‡Jianming Wang,‡Xiaoyi Li, Peng Wang,*Wenlong Ma,Congyu Wang,Jiawei Li,Wenyong Jiang,and Dun Zhang,Enhancement of the voltage output of droplet electricity generators using high dielectric high-entropy oxide composites,Energy&Environmental Science,2024,17,3580.DOI:10.1039/d4ee01234h 查看详细>>

来源:中科院海洋研究所 点击量:0

3 中国科学院海洋研究所揭示喜马拉雅山脉的主要隆升起始于中新世 2024-06-05

近日,国际地学期刊《Palaeogeography,Palaeoclimatology,Palaeoecology》在线发表了中国科学院海洋研究所、同济大学、法国巴黎萨克雷大学和自然资源部第一海洋研究所等单位合作的最新研究成果。研究团队基于孟加拉湾沉积岩芯中的稀土元素含量和铅(Pb)同位素组成,结合蒙特卡洛模拟的同位素混合模型,首次定量重建晚渐新世-早中新世以来孟加拉湾沉积物来源演化历史,在此基础上结合古地理证据,提出了喜马拉雅山脉的主要隆升期可能不早于中新世的新认识。同时,研究提出喜马拉雅造山带在中新世可能由西向东渐进式发展,并在晚中新世逐渐形成类似现代海拔高度的山脉。 在65-55百万年前,印度-亚欧板块碰撞导致的喜马拉雅-青藏高原隆升被认为是新生代全球最重要的构造活动之一。大范围地形抬升驱动了亚洲季风系统的形成与河流系统的重组,进而对全球气候和环境产生了深远影响。然而,喜马拉雅-青藏高原的构造隆升历史至今仍然不清楚。特别是,喜马拉雅山脉的古高程定量重建难度大,鲜有结果发表,导致喜马拉雅山脉隆升的起止时间和构造运动过程仍存争议。 本研究基于国际大洋钻探计划(ODP)121航次在孟加拉湾南部钻取的758站位岩芯为研究材料,研究人员利用Stoke离心法提取了粘土粒级的陆源沉积物,通过稀土元素和Pb同位素地球化学分析方法,应用蒙特卡洛方法定量重建约束了24个百万年以来的物质来源演化历史,限定了喜马拉雅山脉隆升的起止时间以及可能的构造运动过程。本研究证明了应用蒙特卡洛模拟法定量约束长时间尺度沉积物来源的可靠性,这对于未来边缘海岩芯沉积物来源的定量示踪工作具有启示意义。 沉积物来源示踪结果显示,约23百万年前,喜马拉雅风化剥蚀的陆源碎屑物质开始进入孟加拉湾,恒河、雅鲁藏布江和伊洛瓦底江依次成为孟加拉湾沉积物的主要物源,喜马拉雅山脉的隆升可能是主要驱动因素。同时,鉴于三条河流分别发源或流经喜马拉雅山脉的西部、中东部以及东缘,研究人员推断喜马拉雅山脉在中新世期间可能发生了由西向东的渐进式变形,最终导致西部河流沉积物入海时间早于东部。这项发现得到了喜马拉雅锆石裂变径迹和云母Ar-Ar数据支持。 基于上述结论,研究团队认为在约37百万年前,印度和亚欧板块已经发生碰撞,古青藏地区的古海拔高度达到了最高约5千米,而此时喜马拉雅河流的陆源物质尚未进入孟加拉湾;在约23百万年前,板块构造运动加剧,随之引发喜马拉雅山脉的快速隆升促使了喜马拉雅河流开始发育,导致发源于山脉西侧的恒河的陆源物质首先进入孟加拉湾;在23至12百万年期间,喜马拉雅山脉的构造活动向东逐步发育,导致雅鲁藏布江和伊洛瓦底江的沉积物进入孟加拉湾,并最终在晚中新世阶段形成了与现代相似的南亚流域和喜马拉雅山脉地貌。 论文第一作者为中国科学院海洋研究所特别研究助理宋泽华,通讯作者为海洋研究所万世明研究员。本研究得到了国家自然科学基金、国家重点研发项目等项目的支持。 论文信息: Zehua Song,Shiming Wan*,Zhaojie Yu,Mingyang Yu,Christophe Colin,Yi Tang,Jin Zhang,Hualong Jin,Debo Zhao,Xuefa Shi,Anchun Li.(2024).The major uplift in Himalayas was no earlier than the Miocene:Evidence from marine sediment record in the Bay of Bengal.Palaeogeography,Palaeoclimatology,Palaeoecology.648:112275. 原文链接:https://www.sciencedirect.com/science/article/pii/S0031018224002645   查看详细>>

来源:中科院海洋研究所 点击量:0

4 研究进展:α-吡喃酮通过特殊受体系统介导深渊来源放线菌群体感应 2024-06-05

近日,中国科学院深海科学与工程研究所深海生物学研究室深海生物活性物质研究团队撰写的论文“α-Pyrone mediates quorum sensing through the conservon system in Nocardiopsis sp.”于Microbiological Research期刊(生物学1区)在线发表,硕士毕业生朱柏羽为文章第一作者,韩壮副研究员为通信作者。该研究在马里亚纳海沟深渊来源菌株Nocardiopsis sp.LDBS0036中发现一种新的放线菌信号分子—α-吡喃酮(α-pyrone),这类化合物可以调节拟诺卡氏菌的群体感应过程。同时,研究发现α-吡喃酮介导的调节机制在诺卡氏菌属中较为普遍且在放线菌的种内及种间相互作用中扮演着重要功能。因此,本文研究结果揭示了一种新型的群体感应信号系统,这预示着目前仍有很多潜在的细菌通信模式尚未被发现。 微生物的群体感应(Quorum Sensing)是一种微生物间的沟通交流机制,微生物通过释放和感知信号分子(自诱导剂)来检测种群密度和环境变化,并调节基因表达。当种群密度达到某个阈值时,信号分子的浓度增加,触发一系列基因表达,协调群体行为,如生物发光、生物膜形成、毒素和抗生素的产生。 放线菌能够产生大量具有生物活性的次生代谢物,这些代谢物的生产通常由群体感应信号分子调节。团队发现了拟诺卡氏菌Nocardiopsissp.LDBS0036中的新型信号分子—α-吡喃酮(α-pyrone),且通过研究验证了α-吡喃酮的信号分子功能。结果显示,小分子nocapyrone I可以介导菌株的群体感应,诱导吩嗪类抗生素的产生。通过生物信息学分析发现,菌株LDBS0036中吡喃酮合成基因上游存在一个多组分调控系统——Conservon。敲除该系统的基因后,吩嗪和吡喃酮的产量均受到影响,推测其用于接收和传递α-吡喃酮信号。 分析发现,包含conservon系统的吡喃酮生物合成基因簇在放线菌拟诺卡氏属(Nocardiopsis)中广泛存在并高度保守。此外,吡喃酮同系物在链霉菌属中也存在并且通过不同途径合成。将代表性的拟诺卡氏菌及链霉菌发酵上清液添加到吡喃酮敲除型菌株?nprB后,恢复了吩嗪的产生。通过质谱分析和构建化合物的分子网络,发现能激活吩嗪产生的菌株中都可以产生吡喃酮类小分子。基于此,团队提出了不同来源、不同类型的α-吡喃酮类小分子介导放线菌种间及种内相互作用的模型。该研究结果拓展了我们对放线菌群体感应系统的认识,有助于在放线菌中激活沉默的活性代谢产物合成,同时也可以为合成生物学提供开关、生物传感器和逻辑门等工具。 该工作得到了国家重点研发计划,海南省重点研发计划和全球深渊深潜探索计划(Global TREnD)等项目的支持。 论文信息:Boyu Zhu(朱柏羽),Ziyun Cen(岑梓韵),Yiqiu Chen(陈以秋),Kun Shang(尚琨),Ji’an Zhai(翟吉安),Meigui Han(韩梅桂),Jiawei Wang(王佳伟),Zhiyong Chen(陈志勇),Taoshu Wei(魏韬书),Zhuang Han*(韩壮).α-Pyrone mediates quorum sensing through the conservon system in Nocardiopsis sp..Microbiological Research.,2024,285,127767. 论文链接:https://doi.org/10.1016/j.micres.2024.127767 查看详细>>

来源:中科院深海科学与工程研究所 点击量:0

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190