中科院文献情报系统—海洋科技情报网 Chinese Academy of Sciences | marine science and technology information network system

微信公众号

您当前的位置: 首页 > 重要资讯

重要资讯共计 549 条信息

      全选  导出

1 我国首台深远海漂浮式风电平台启航 2022-06-30

日前,由我国自主研发的首台深远海漂浮式风电平台“扶摇号”启航,成为我国进军深远海能源开发领域的利器。此次,哈尔滨工程大学船舶工程学院深海工程技术团队承担了风机一体化结构健康监测系统的研制,助力“扶摇号”海上争风。 2019年,哈工程承接了国内首套深远海漂浮式风机平台结构健康动态监测系统的研制任务,经过3年努力,完成了“扶摇号”首次全过程动态结构响应的数据采集任务。 据技术团队负责人、哈工程船舶工程学院教授曲先强介绍,该监测系统可以获取平台运动和系泊参数,从而对叶片和发电机组进行调节控制,达到风机的最大发电量。还可对平台结构进行实时动态监测,可保障漂浮式风机在设计寿命期内安全运行。 据悉,该监测系统由运动监测系统、气隙监测系统、腐蚀监测系统等10个子系统集成,系统国产率达到100%,实现了动态信号与机组主控系统和岸基设备的实时通信。 曲先强介绍,今年5月系统开始安装调试,团队要在72小时内布置完成所有测点,包括约2000米量级的数据线布置和连接、子系统现场调试、整体系统联调、优化算法、升级软件系统、数据传输对接等一系列工作。 “布置测点时间紧迫,必须选取最有意义的测点先行布置。”“测试现场可能会下大雨,一定要做好设备、传感器的防风、防水工作。”虽然团队成员大部分都在哈尔滨,但前方技术和后方成员配合默契,顺利完成了各项任务。现场服务团队连续奋战72小时,克服了时间紧、任务重、连续降雨和配套设施缺乏等困难,抢在风机拖航前完成了系统安装调试。 在“扶摇号”的总装、拖航、海上安装和系统调试过程中,团队成员连续坚守14个日夜,获得了深远海漂浮式风电装备的第一手实测数据,填补了我国深远海漂浮式风电领域数据空白,为“扶摇号”顺利运行保驾护航。 “扶摇号”漂浮式风电平台是中国船舶集团下属中船海装风电股份有限公司牵头,国内自主研发的深远海漂浮式海上风电成套装备一体化示范工程。 查看详细>>

来源:中国自然资源部 点击量:7

2 中国科学院海洋研究所破译首个深海甲壳动物(深海水虱)基因组 2022-06-24

近日,中国科学院海洋研究所李富花研究员课题组和李新正研究员课题组合作破译了国际上首个深海甲壳动物——深海水虱(Bathynomus jamesi)的基因组,并揭示了深海水虱体型巨大化和深海寡营养环境适应的独特分子遗传机制。 此研究是继深海软体动物和深海管虫等深海物种之后,首次报导深海甲壳动物基因组,为揭示甲壳动物独特的深海环境适应性进化和遗传机制提供了重要分子证据。相关研究成果“Genome of agiant isopod,Bathynomus jamesi,provides insights into body size evolution and adaptation to deep-sea environment”发表在生物学Top期刊BMC Biology上。 等足类是甲壳动物中少有的既包含水生、半陆生和完全陆生物种,包含深海和浅海物种的类群。不同生态位的类群在体型上存在巨大差异,其中,深海等足类呈现出体型巨大化现象。理论上讲,深海环境极其恶劣,其寡营养环境不利于巨型生物的生存,因其需要更多的绝对能量。深海水虱是深海巨型等足类的代表性物种,它们因保持世界上最长的绝食时间记录(5年以上)而广受关注。深海水虱基因组的破译为揭示巨型甲壳动物适应深海寡营养环境的独特分子机制提供了重要基础。 研究人员首先完成了深海水虱基因组的测序和组装,构建了高质量的基因组图谱,其基因组组装大小达5.89 Gb,是目前已测序甲壳动物中基因组最大的物种。研究发现其基因组中转座元件的含量高达84%,是引起基因组扩张的重要原因。通过比较基因组学分析,研究人员发现深海水虱基因组内多条生长相关信号通路上的基因发生了显著扩张,包括两条激素信号通路(thyroid and insulin hormone signaling),mTOR信号通路和Hippo信号通路,说明深海水虱体型巨大化的形成可能与其强化的生长相关信号通路密切相关。 深海水虱拥有一个被填满食物的巨大的胃,占身体体积的2/3,还具有发达的用于存储有机物质的组织——脂质体。为了解析深海水虱营养高效利用机制,研究人员对深海水虱不同组织进行了转录组测序和分析,结果发现大量糖代谢和膜泡运输相关的基因家族在深海水虱基因组上发生了显著扩张,且特异性地在胃和肠道中高表达,提示其可能与能量的高效利用相关。此外,研究人员发现脂质体内脂质的积累主要得益于其较低的脂质代谢效率,而非高效的脂质合成能力。 中科院海洋所袁剑波副研究员、张晓军研究员和寇琦副研究员为文章共同第一作者,李富花研究员、李新正研究员和相建海研究员为文章通讯作者。研究得到国家重点研发计划和国家自然科学基金等项目资助。 论文链接: https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-022-01302-6 查看详细>>

来源:中科院海洋研究所 点击量:10

3 德启动航行计划以更好地了解涡流对海洋的影响 2022-06-15

海洋涡流在营养物质或物理特性(如热量)的混合和运输中发挥着重要作用。通过这种方式,它们影响物质流向海底或物种的出现。由德国亥姆霍兹基尔海洋研究中心(GEOMAR)Jens Greinert教授领导的这项以“MOSES涡流研究III”为主题的M182航次,目的是详细研究海洋涡流的影响,重点是从海面到海底的碳运输、生物碳泵的机制以及向深海的碳输出。这些过程会影响海洋中二氧化碳的吸收,并与气候变化直接相关。 上升流区是世界上生产力最高的海洋区域之一。它们不仅对生物多样性具有重要意义,而且作为高产渔场在全球粮食供应和经济中发挥着重要作用。海洋涡流影响这些区域的生物、生物地球化学和物理特性,因此对其功能具有重要意义。充分了解这些与人为气候变化相关的过程对于评估对研究区域上升流系统动态的潜在深远影响非常重要。 海洋涡流影响着许多地区海洋中生命的出现,涡流对上层水中的碳泵(控制海洋中二氧化碳吸收的生物过程)有重大影响。因此,它们影响着大气和海洋之间的二氧化碳交换。涡流如何影响二氧化碳从上层水输入到深海并最终到达海底。当碳储存在沉积物中时,从大气中去除的二氧化碳会在地质上长期存储一段时间。 M182的关键是部署整个自动测量装置和着陆器装置,这是一种测量平台。共有七艘自主水下航行器(AUV)和一辆新型漫游器将与三个深海着陆器系统一起探索水柱和海底。船上有大量的高科技仪器,这些都是更好地收集研究数据所必须的。平台上的光学、声学和化学传感器与M182研究船METEOR实验室中的化学、生物和遗传分析相辅相成。 这次考察是“涡流在东部上升流系统碳泵中的作用”(REEBUS)项目的一部分,由德国联邦教育和研究部以及亥姆霍兹倡议“地球系统模块化观测解决方案”(MOSES)资助。在这项由亥姆霍兹环境研究中心(UFZ)协调的倡议中,亥姆霍兹协会的九个研究中心在2017年至2022年间联合构建可移动和模块化部署的观测系统,以研究时间和空间有限的动态事件(如极端降水和径流事件)对地球和环境系统的长期发展的影响。(傅圆圆编译) 查看详细>>

来源:德国亥姆霍兹基尔海洋研究所 点击量:13

4 AUV利用水下光学无线通信从海底自动检索观测数据 2022-06-15

日本国立海洋研究开发机构(JAMSTEC)海洋地勘与工程研究所(MarE3)所属工程部研究人员已经利用水下光学无线通信设备,成功地从安装在海底的观测系统中自动检索观测数据。 在海底安装的传统观测设备中,回收和重新安装仪器对于检索观测数据是必不可少的。不过,回收和重新安装费力且昂贵,而且会导致观察不连续,使数据质量下降。这也是世界上首次在水下演示用自主式水下航行器(AUV)自动检索海底仪器数据的方法。这种方法在未来将有助于降低观测成本和提高数据质量。 该研究小组与岛津公司合作,一直在开发实现水下光学无线通信技术。在这项研究中,研究人员试图利用水下光学无线通信设备与在深海海底的AUV建立水下Wi-Fi连接,从海底安装的观测仪器中获得数据。 用于深海海底观测的海洋登陆器“FFC11K”被放置在Sagami湾1420米深的深海海底,AUV"AUV-NEXT"可以自主接近并利用安装在它们身上的光学通信装置收集数据。其目的是获得使用安装在FFC11K上的4K分辨率相机拍摄的海底图像。由于AUV不能以低速接近海底,而且低速时机动性能变差,AUV以一定的深度和巡航速度在FFC11K上航行并经过。即使AUV经过FFC11K上空的时间很短(约10秒),也能成功地用光通信获取FFC11K拍摄的海底图像(约130KB)。 值得注意的是,光学无线通信状态是通过声学通信从AUV传送到辅助船"Yokosuka",由操作人员不断监测。此外,这一连串的操作,除了发出接近目标的指令外,都是自主进行的。 当采用这种方法进行深海海底观测时,即使是在没有水下电缆的海洋区域,也没有必要使用船只来回收观测仪器。AUVs可以在任意时间自动检索数据,从而实现在同一地点的连续观测。 这种方法可用于使用压力计等传感器观察海底地壳运动等领域,其中高频数据检索是可取的。此外,这个项目的成功极大地推动了"自动海底观测"这一最终目标的实现,即从沿海基地出发的AUV将自主地巡视多个水下观测仪器,然后再返回基地,只检索观测数据。在未来,科研人员希望能够继续改进通信设备,加强数据检索方法,探索更有效的数据检索方式,并争取进一步推进系统的发展。(李桂菊编译) 查看详细>>

来源:日本国立海洋研究开发机构 点击量:39

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190