中国科学院文献情报系统—海洋科技情报网 Chinese Academy of Sciences | marine science and technology information network system

微信公众号

  • 中国科学院南海海洋研究所揭示“风-潮联合效应”对南海北部近惯性内波的影响
  • 水下遥控航行器探海7000米
  • 自然资源部第一海洋研究所在极端气候事件研究方面取得新进展
  • 中国科学院海洋研究所利用基因编辑技术解析了藻类细胞对种群密度信号的感知与调控的分子机制
  • 中国科学院海洋研究所发现海洋微生物源新型抗多重耐药菌先导化合物
  • 中国科学院海洋研究所在皱纹盘鲍基因编辑方面获得新进展
  • 南海北部发现海底活动断裂
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

COP28迪拜海洋宣言

阿拉伯联合酋长国迪拜举行《联合国气候变化框架公约》第28次缔约方会(COP28)之前,缔约方联合发布了《迪拜海洋宣言》,呼吁世界各国认识海洋在气候中的重要性,并扩大和改进全球海洋观测能力。 《迪拜海洋宣言》强调,除了推进基于海洋的气候解决方案外,还呼吁大幅减少温室气体排放,并刻不容缓地采取措施遏制过度捕捞、栖息地破坏和海洋污染等人为活动给海洋造成损害。 COP28迪拜海洋宣言中阐明的具体行动包括: (1)通过优化全球海洋碳通量测量能力和加强地球海洋气候系统能力,改进对《巴黎协定》所列目标进展情况的全球盘点估计和测量。 (2)对新兴海洋二氧化碳清除战略实施强有力的环境监测、报告和验证体系,以确保在实现净负排放的同时保护关键的海洋生态系统。 (3)扩大对海洋、大气以及生物多向性的观测能力,促进了解和应对气候变化对海洋生物分布、海洋生态系统健康、生物量和生物多样性的影响。 (4)提高发展岛屿国家和发展中国家的海洋观测能力,通过国家自主贡献和国家适应计划,阐明海洋自然功能和蓝色经济对气候稳定的贡献。 目前为止,超过45个国际海洋科学、政治和慈善组织签署了COP28迪拜海洋宣言。(李亚清编译;熊萍校稿)

2024-02-27  (点击量:51)

中国科学院海洋研究所发现海洋微生物源新型抗多重耐药菌先导化合物

近日,微生物学领域经典期刊Applied and Environmental Microbiology及Journal of Agricultural and Food Chemistry分别刊发了中国科学院海洋研究所孙超岷课题组与青岛大学吴仕梅团队合作开展的关于海洋微生物源抗生素抑制多重耐药菌分子机制的研究成果,为研发新型抗多重耐药菌抗生素提供了先导化合物,也为深入挖掘海洋微生物在生物医药领域的应用潜力奠定了理论基础。 多重耐药菌(MDROS)又称耐多药微生物,其出现是细菌变异及过度使用抗菌药物的结果。MDROS感染患者往往病情复杂,治愈困难,需要用较高级抗菌药物进行治疗,且易形成定植菌,给患者造成沉重的经济负担。而MDROS可通过污染的手、物品等方式进行接触传播,易造成医院感染,增加患者的痛苦,延长患者住院日,增加医疗成本等,甚至导致死亡。细菌的多重耐药(multi-drug resistance,MDR)不是天然固有耐药,而是获得性耐药,与抗菌药物使用强度有关。在国际上,细菌多重耐药一般指细菌对一类或更多类抗菌药物耐药,且通常对除了一类或两类市场上可购买到的抗菌药物之外的所有抗菌药物都耐药,如耐甲氧西林的金黄色葡萄球菌、万古霉素耐药肠球菌等。因此,筛选新型抑制多重耐药性细菌的抗生素一直是药物学研究领域的重要关注点。海洋尤其是深海生境的低温、缺氧、高压等极端条件孕育了大量具有特殊生命过程的微生物,它们往往会产生结构新颖、功能独特的代谢产物,是发现新型抗多重耐药菌抗生素的天然宝库。 孙超岷和吴仕梅团队近年来一直致力于从海洋生境发掘新型抗生素的工作,尤其是针对临床日益泛滥的耐甲氧西林的金黄色葡萄球菌(MRSA)。他们发现一株海洋真菌Alternaria alternata FB1产生的代谢产物交链孢酚(AOH)及其衍生物交链孢酚单甲醚(AME)能通过紊乱MRSA的细胞分裂过程而抑制病菌的生长,进一步研究发现AOH是通过作用于MRSA的DNA拓扑异构酶进而阻碍了其发挥解旋酶活性。AOH和AME在以往的报道中虽然将其归类于毒素,但两者在有效抑菌浓度下对人源正常细胞没有明显毒性,而且能有效保护斑马鱼免受MRSA、鳗弧菌等病原微生物的侵染,显示了良好的成药活性(Applied and Environmental Microbiology,2024)。这也是首次报道AOH和AME的体内抗菌活性,也提示我们毒素在有些情况下也可以发展成为抗生素。该研究还通过基因敲除和回补的方式定位了AOH和AME的合成基因簇,为下一步开展上述抗生素的生物合成和改造工作奠定了基础。值得一提的是,Alternaria alternata FB1菌株还具有优良的降解各种塑料的活性(Journal of Hazardous Materials,2022),再加上其可以高产AOH和AME(产量高于目前报道的真菌);因此,待Alternaria alternata FB1菌株实现塑料降解的工业级应用后,可以回收处理塑料废弃物后的真菌培养物,进而纯化AOH和AME用于下游抗菌素的研发,真正建立塑料降解的循环经济模式。此外,孙超岷和吴仕梅团队还从一株深海冷泉芽孢杆菌Bacillus licheniformis M1中获得了一种新型抗菌肽bacipeptin。该抗菌肽可以有效降低MRSA的毒力,并通过干扰病菌的组氨酸代谢、诱导活性氧(ROS)的积累、下调Na+/H+反转运蛋白和细胞壁相关基因,从而对细胞壁和细胞膜造成损伤,发挥抗菌作用。抗菌肽bacipeptin没有溶血活性,能有效阻止MRSA对斑马鱼的侵染。值得一提的是,抗菌肽bacipeptin的抗菌活性及稳定性强于目前市面上出售的Nisin(已经商品化的食品级抗生素),也说明抗菌肽bacipeptin有潜力发展成为生物医药及食品级抗生素(Journal of Agricultural and Food Chemistry,2024)。 中国科学院海洋研究所及青岛大学联合培养的硕士研究生李荣梅及魏晓彤分别为文章的第一作者,孙超岷和吴仕梅两位老师为通讯作者。研究得到了崂山实验室科技创新计划、国家基金委重大研究计划及创新群体项目、山东省自然科学基金重大基础研究项目等联合资助。 相关论文: Rongmei Li,Zhenjie Su,Chaomin Sun*,Shimei Wu*.Antibacterial insights into alternariol and its derivative alternariol monomethyl ether produced by amarine fungus.Applied and Environmental Microbiology,2024.Doi:10.1128/aem.00058-24. https://journals.asm.org/doi/10.1128/aem.00058-24 Xiaotong Wei,Yuanyuan Hu,Chaomin Sun,Shimei Wu*.Characterization of anovel antimicrobial peptide bacipeptin against foodborne pathogens.Journal of Agricultural and Food Chemistry,2024.Doi:10.1021/acs.jafc.4c00573. https://pubs.acs.org/doi/10.1021/acs.jafc.4c00573

2024-03-25  (点击量:1)

虫黄藻介导了珊瑚的营养可塑性

近日,自然资源部第三海洋研究所海洋生态保护与修复重点实验室郑新庆研究员团队联合厦门大学环境与生态学院和汕头大学,在Ecological Indicators发表题为“Symbiont genus determines the trophic strategy of corals:Implications for intraspecific competition for energy sources in coral reefs”的研究论文。该论文利用稳定同位素技术结合珊瑚共生体的多个生理参数耦合分析,揭示了共生虫黄藻差异对其宿主营养可塑性的影响,并基于营养生态位理论,探讨了珊瑚最大化利用环境中有限资源的潜在机制,为预测气候变化下不同珊瑚共生功能体的适应和分布提出新见解。自然资源部第三海洋研究所与厦门大学联合培养的王啟芳博士是本文的第一作者。 珊瑚礁是海洋中不可或缺的生态系统,在寡营养盐海域却拥有高初级生产力和高生物多样性的特点,被誉为“蓝色沙漠中的绿洲”。其中,造礁珊瑚宿主与其内共生虫黄藻之间的营养交互和再利用被认为是解释该悖论的主要原因。由于珊瑚宿主权衡自养(即通过共生体合成并转运光合作用产物)和异养(即摄食环境中的食物)的能力在很大程度上决定了他们对环境的适应性以及抗逆性,因此珊瑚的营养策略及其可塑性受到了广泛的关注。然而,驱动珊瑚营养策略调整的潜在因素和营养策略差异的功能意义仍不清楚。 海南岛南部是我国典型的近岸珊瑚礁生态系统。其中,鹿角杯形珊瑚(Pocillopora damicornis;Pd)是区域内的优势种。前期的研究发现,该种可与C属(Cladocopium)或D属(Durusdinium)虫黄藻形成稳定的共生关系(简称PdC或PdD)。研究团队采集了不同季节相同深度的Pd和潜在外源食源(浮游动物和颗粒有机物),利用实时荧光定量聚合酶链式反应(qPCR)对Pd进行主导共生虫黄藻属的鉴定(PdC:42个;PdD:47个)。在生理性状上,分析了PdC和PdD的差异,并利用使用碳、氮稳定同位素技术评估了珊瑚营养策略的时空变动特征。 与PdD相比,PdC共生虫黄藻密度低约60%,但其单位藻细胞叶绿素含量高约30%,表现出更强的光合作用效率,其虫黄藻有着更富集的δ13C。此外,从生理参数的季节变动角度看来,环境条件的变化对PdC的影响显著大于PdD,说明两种珊瑚共生体对环境变化的适应机制存在区别。环境敏感型PdC可能是通过不断调整自身生理过程来适应环境变化,而环境耐受型PdD则可能是通过保持稳固的共生关系来面对外界环境的变化。 本研究首次发现共生不同属虫黄藻的同种珊瑚各自占据独特的营养生态位,揭示了虫黄藻多样性在珊瑚宿主营养生态位特化中的作用。该现象曾被报道于不同珊瑚物种之间,并被认为是珊瑚优化种间空间等资源竞争的证据。据此,本研究所发现的珊瑚种内营养生态位的特化,表明了PdC与PdD对于营养来源的差异化利用,有助于珊瑚在群落水平上最大限度的利用有限的资源,并支持了共生藻多样性在不断变化的海洋环境中对珊瑚宿主的营养适应以及生态位扩张具有关键作用。 本研究分别通过定性(珊瑚宿主与虫黄藻的碳、氮同位素差值,营养生态位叠度,质心欧氏距离)和定量(贝叶斯混合模型)的方式估算了Pd在不同季节的相对营养来源。发现Pd可以根据季节间环境种资源可利用性差异调整自身主导营养策略,即夏季更依赖自养过程(虫黄藻)而冬季更依赖异养过程(浮游动物等),而共生不同虫黄藻Pd的营养可塑性具有明显差异。其中,PdC的自养相对贡献在不同季节间的变幅高达37.1%,较PdD高23.3%,表现出了更高的营养可塑性。此外,PdC和PdD分别在冬季和夏季表现出更强的异养能力,这意味着他们分别在相对低温和高温的条件下具有更强的抗胁迫能力。该结果从营养生态学的角度,耦合了气候变化背景下共生C和D属虫黄藻珊瑚共生功能体的空间分布趋势。 近年来,自然资源部第三海洋研究所海洋生态保护与修复重点实验室珊瑚研究团队在珊瑚礁退化和适应机制方面开展了深入的研究,尤其在虫黄藻调节珊瑚宿主响应环境变化的动态过程及其生理机制,团队发现了不同基因型虫黄藻会与珊瑚宿主会形成生理功能迥异的共生体,强调了不同类型虫黄藻对珊瑚响应热胁迫的调控作用,为评估珊瑚对全球变化的弹性适应提供了独特的视角。结果先后在Microbiome、Ecological Indicators等期刊发表。本论文是上述文章的基础了进一步利用稳定同位素技术探讨了共生虫黄藻差异对其宿主营养策略的影响,为预测气候变化下不同珊瑚共生功能体的适应和分布提出新见解。 ¤本文链接 Wang,Q.,Zheng,X.,Zhou,X.,Zhang,H.,Cai,L.,Leung,J.Y.S.,Huang,L.,2024.Symbiont genus determines the trophic strategy of corals:Implications for intraspecific competition for energy sources in coral reefs.Ecological Indicators.158,111477.https://doi.org/10.1016/j.ecolind.2023.111477,中科院2区Top,影响因子6.9.

2024-01-15  (点击量:581)

专题情报

查看更多

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190